Skip to main content Market Data Price
The price of the underlying asset, derived from the relevant external oracle source.
Denoted as P t market P_t^{\text{market}} P t market .
Index Price
P t index = { P t market , if P t market ∈ [ 0.5 P t − 1 market , 1.5 P t − 1 market ] P t − 1 market , otherwise. P_t^{\text{index}} =
\begin{cases}
P_t^{\text{market}}, & \text{if } P_t^{\text{market}} \in [0.5 P_{t-1}^{\text{market}},\; 1.5 P_{t-1}^{\text{market}}] \\
P_{t-1}^{\text{market}}, & \text{otherwise.}
\end{cases} P t index = { P t market , P t − 1 market , if P t market ∈ [ 0.5 P t − 1 market , 1.5 P t − 1 market ] otherwise.
That is, the Index Price equals the current Market Data Price if it lies within ±50% of the previous value, otherwise the prior price is used.
Oracle Price
Defined in Contract Specifications :
Mark Price
The Mark Price P t mark P_t^{\text{mark}} P t mark is computed as:
P t mark = Median ( P t oracle , P t oracle + EMA 150 s ( M t − P t oracle ) , Median ( B t , A t , T t ) ) P_t^{\text{mark}} = \text{Median} \Big(
P_t^{\text{oracle}},\;
P_t^{\text{oracle}} + \text{EMA}_{150s}(M_t - P_t^{\text{oracle}}),\;
\text{Median}(B_t,\; A_t,\; T_t)
\Big) P t mark = Median ( P t oracle , P t oracle + EMA 150 s ( M t − P t oracle ) , Median ( B t , A t , T t ) )
where M t M_t M t is the mid price, B t B_t B t the best bid, A t A_t A t the best ask, and T t T_t T t the last traded price.
Unrealized PnL
P n L unrealized = ∑ i q i ⋅ ( P t mark − P i , entry ) PnL_{\text{unrealized}} = \sum_i q_i \cdot (P_t^{\text{mark}} - P_{i,\text{entry}}) P n L unrealized = i ∑ q i ⋅ ( P t mark − P i , entry )
for all open positions i i i with quantity q i q_i q i .
Realized PnL
P n L realized = ∑ j ( P j , exit − P j , entry ) ⋅ q j PnL_{\text{realized}}= \sum_j (P_{j,\text{exit}} - P_{j,\text{entry}}) \cdot q_j P n L realized = j ∑ ( P j , exit − P j , entry ) ⋅ q j
for all closed positions j j j .
Cash
Cash = D − W + F net + R R − Fees \text{Cash} = D - W + F_{\text{net}} + RR - \text{Fees} Cash = D − W + F net + RR − Fees
where D D D = deposits, W W W = withdrawals, F net F_{\text{net}} F net = net funding, R R RR RR = referral rewards.
Margin
Margin = Position Margin + Order Margin \text{Margin} = \text{Position Margin} + \text{Order Margin} Margin = Position Margin + Order Margin
Account Equity
Equity = Cash + P n L realized + P n L unrealized \text{Equity} = \text{Cash} + PnL_{\text{realized}} + PnL_{\text{unrealized}} Equity = Cash + P n L realized + P n L unrealized
Available Balance
Available Balance = Account Equity − Margin \text{Available Balance} = \text{Account Equity} - \text{Margin} Available Balance = Account Equity − Margin
Withdrawable Balance
Withdrawable Balance = Cash + P n L realized + min ( P n L unrealized , 0 ) − 1.05 × Margin \text{Withdrawable Balance} = \text{Cash} + PnL_{\text{realized}} + \min(PnL_{\text{unrealized}}, 0) - 1.05 \times \text{Margin} Withdrawable Balance = Cash + P n L realized + min ( P n L unrealized , 0 ) − 1.05 × Margin
Position Value
V = P t mark × Q V = P_t^{\text{mark}} \times Q V = P t mark × Q
where Q Q Q is the position quantity in the symbol.
Funding Rate
The rate r t funding r_t^{\text{funding}} r t funding paid between long and short positions when the futures price deviates from the underlying index.
Funding Fee
Funding Fee = P t mark × Q × r t funding \text{Funding Fee} = P_t^{\text{mark}} \times Q \times r_t^{\text{funding}} Funding Fee = P t mark × Q × r t funding
Liquidation Spread
The maximum spread Δ liq \Delta_{\text{liq}} Δ liq from P t mark P_t^{\text{mark}} P t mark at which an orderly Immediate-or-Cancel (IOC) liquidation order is executed.
DLP Fee
A fee f DLP f_{\text{DLP}} f DLP paid to Designated Liquidity Providers (DLPs) who absorb liquidated positions.
Mark-to-Market (MTM)
All portfolios are re-evaluated every 200 ms using the Mark Price P t mark P_t^{\text{mark}} P t mark to:
Recalculate Unrealized PnL,
Detect margin requirement breaches,
Trigger liquidation procedures.